

METRIC AND TOPOLOGICAL SPACES: RE-EXAM 2024/25

A. V. KISELEV

Problem 1 (7 + 8 + 10%). (a) Can some open disk of radius 4 coincide with some open disk of radius 3? (b)

(c) Can some open disk of radius 4 be entirely and properly contained (\subset) in some open disk of radius 3? (d)

(e) Can a closed disk of radius 3 around a point $x_0 \in \mathcal{X}$, $\mathcal{B}_3(x_0) = \{x \in \mathcal{X} \mid \text{dist}(x, x_0) \leq 3\}$, not coincide with the closure of the open disk $\mathcal{B}_3(x_0)$ with the same centre and radius? (If yes, give example; if not, prove.)

Problem 2 (10%). Give an example of a space \mathcal{X} with infinitely many subsets A_n , $n \in \mathbb{N}$, such that the boundary $\partial(\bigcup_{n=1}^{+\infty} A_n)$ is not contained in the union of boundaries $\bigcup_{n=1}^{+\infty} \partial A_n$.

Problem 3 (20%). If \mathcal{X} is a connected space such that $\mathcal{X} \ni x, y \mid x \neq y$ and for any $z \in \mathcal{X}$, the set $\{z\}$ is closed in \mathcal{X} , then the number of points in \mathcal{X} is infinite.

(prove) contradiction

Problem 4 (5 + 2 · 10%). (a) Can a non-empty open proper subset A ($\emptyset \neq A \subsetneq \mathcal{X}$) of a space \mathcal{X} be simultaneously closed in \mathcal{X} ? (If yes, give example; if not, prove.) (b) Is $\mathcal{B}_1(\mathbf{0})$, the open unit disk centered at $\mathbf{0} = (0, 0, \dots)$, compact in ℓ_2 ? (c) Is $\mathcal{B}_{\bar{1}}(\mathbf{0})$, the closed unit disk centered at $\mathbf{0} = (0, 0, \dots)$, compact in ℓ_2 ? (d)

Problem 5 (20%). Solve for $x(s)$ the integral equation,

$$x(s) = \frac{1}{2} \int_0^1 s \cdot t \cdot x(t) dt + \frac{5}{6}s,$$

by consecutive approximations starting from $x_0(s) = 0$. (In the end, verify by direct substitution that the function $x(s)$ which you have found satisfies the equation.)

Date: January 30, 2025 (18:15–21:15). Good luck!